CAMBRIDGE INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05

MATHEMATICS AND HIGHER MATHEMATICS Paper 5 (Mechanics 2)

D	Page 1 Mark Scheme Syllabus Pape		
Г	aye	A AND AS LEVEL – JUNE 2003	9709/8719 5
		Mechanics 2	
1		The distance from the centre to the rod is $\sqrt{25^2 - 24^2}$	- B1
		For taking moments about the centre of the ring or at the mid-point of the rod, or C.O.M. of frame	pout
		(correct number of terms required in equation)	M1
		$(1.5 + 0.6)\overline{x} = 0.6 \times 7 \text{ or } (1.5 + 0.6)(7 - \overline{x}) = 1.5 \times 7$	
		$1.5 \overline{x} = 0.6 (7 - \overline{x})$	A1
		Distance is 2cm	A1
		SR Allow M1 for 48.7 = $(50 \pi + 48) \bar{x}$	
			4
2	(i)	OQ = 4 tan 20° (=1.456)	B1
		OG = 1.5	B1
		G not between O and Q (all calculations correct)	B1
			3
	(ii)	Hemisphere does not fall on to its plane face	*B1 ft
		Because the moment about <i>P</i> is clockwise or the centre of mass is to right of <i>P</i> Q	(dep)* B1 ft
			2
3	(i)	Rope is at 30° to wall, or beam is at 0° to the horizon or a correct trig. ratio used	tal B1
		For taking moments about <i>A</i> or For taking moments about <i>P</i> and resolving horizontal	lly M1
		2.5 T = 45 g x 3cos 30° or 5 H = 45 g x 3cos 30° and H = T sin30°	A1 ft
		Tension is 468 N	A1
			4
	(ii)	Horizontal component is 234 N (ft $\frac{1}{2}$ T)	B1 ft
		For resolving forces vertically ($V = 45g - T\cos 30^\circ$)	M1
		Magnitude of vertical component is 45 N	A1 ft
		SR angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (<i>T</i> <u>an</u>	<u>nd</u> angle), M1, A0 3

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

PMT

4	(i)	For using Newton's second law with $a = v \frac{dv}{dx}$	M1
		$-\frac{1}{3v} = 0.2v \frac{dv}{dx}$	A1
		$3v^2 \frac{dv}{dx} = -5$ from correct working	A1
			3
	(ii)	For separating the variables and attempting to integrate	M1
		$v^3 = (A) - 5x$	A1
		For using $x = 0$ and $v = 4$ to find A, and then substituting $x = 7.4$ (or equivalent using limits)	M1
		<i>v</i> = 3	A1
			4
5	(i)	For resolving forces vertically (3 term equation)	M1
		$T\cos 60^{\circ} + 0.5 \times 10 = 8$	A1
		Tension is 6 N	A1
			3
	(ii)	Radius of circle is 9sin60° (7.7942)	B1
		For using Newton's second law horizontally with $a = \frac{v^2}{r}$	M1
		$6\sin 60^{\circ} = 0.5 \frac{v^2}{(9\sin 60^{\circ})}$	A1 ft
		Alternative for the above 2 marks:	
		For using Newton's second law perpendicular to the string with a = $\frac{v^2}{r}$	M1
		$(8 - 0.5 \times 10)\sin 60^\circ = 0.5 \frac{v^2}{(9\sin 60^\circ)}\cos 60^\circ$	A1 ft
		Speed is 9 ms ⁻¹	A1
			4
		NB Use of $mr\omega^2$, the M1 is withheld until $v = r\omega$ is used	

NB Use of $mr\omega^2$, the M1 is withheld until $v = r\omega$ is used **SR** Lift perpendicular to the string: (i) $8\sin60^\circ = 0.5g + T\cos60^\circ \rightarrow T = 3.86$: M1, A1, A1 (-1 MR) (2 out of 3 max); (ii) $3.86\sin60^\circ + 8\cos60^\circ = \frac{0.5v^2}{9\sin60^\circ}$: B1, M1, A1 $\sqrt{}$, A1 (-1 MR) (3 out of 4 max) $\Rightarrow 10.7$

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL – JUNE 2003	9709/8719	5

6 (i) For using
$$y = \dot{y}_0 t - \frac{1}{2} g t^2$$
 with $y = 0$ and $t = 10$ or
 $\dot{y} = \dot{y}_0 - gt$ with $\dot{y} = 0$ and $t = 5$ M1

$$0 = 60\sin\alpha \times 10 - \frac{1}{2} \times 10 \times 10^{2} \text{ or } 0 = 60\sin\alpha - 10 \times 5$$

 $\alpha = 56.4^{\circ}$

A1

(ii) For substituting t = 5 into $y = \dot{y}_0 t - \frac{1}{2}gt^2$ or $\dot{y} = 0$ into $\dot{y}^2 = \dot{y}_0^2 - 2gy$ or $\dot{y} = 0$ and t = 5 into $y = \frac{\dot{y}_0 + \dot{y}}{2}t$ M1

Greatest height is 125m

2

4

A1

(iii) $\dot{y} = 60\sin\alpha - gT$ B1

$\dot{x} = 60\cos \alpha$		B1
---------------------------	--	----

For attempting to solve $\dot{x} = \dot{y}$, or a complete method M1 for an equation in *T* using $\dot{x} = \dot{y}$

NB. Use of \dot{y}_0 = 60 in (i) and (ii) is M0

© University of Cambridge Local Examinations Syndicate 2003

PMT

	Page 4	Mark Scheme	Syllabus	Paper
		A AND AS LEVEL – JUNE 2003	9709/8719	5
7	(i) F	For using $T = \frac{\lambda x}{L}$ $(\frac{130 \times 3}{10} \text{ or } \frac{130 \times 1.5}{5})$		M1
	-	Tension is 39 N		A1
				2
	(ii) F	For resolving forces vertically ($mg = 2 \times 39 \times \frac{5}{13}$)		M1
	ſ	Mass is 3kg		A1
				2
	(iii) E	Extension = 20 - 10 (or 10 - 5)		B1
	(For using EPE = $\frac{\lambda x^2}{2L}$ (<i>L</i> must be 10 or 5; must be attempt at extension, e.g x = 8 - 2.5 is M0)	. <i>x</i> = 20 or	
		[EPE = $\frac{130 \times 10^2}{2 \times 10}$ or EPE = 2 x $\frac{130 \times 5^2}{2 \times 5}$] (Allow M1 only for x = 2 or 3)		M1
	E	EPE is 650 J (ft attempted extension in lowest position))	A1 ft
				3
	(iv) (Change in GPE = 3 x 10 x 8		B1 ft
		For using the principle of conservation of energy with KE, GPE and EPE all represented	I	M1
	6	$650 = \frac{1}{2}3v^2 + 3 \times 10 \times 8 + \frac{130 \times 2^2}{2 \times 10}$		A1 ft

Speed is 16 ms⁻¹

A1

4