CAMBRIDGE
 INTERNATIONAL EXAMINATIONS

June 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/05, 8719/05
 MATHEMATICS AND HIGHER MATHEMATICS
 Paper 5 (Mechanics 2)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	5

Mechanics 2

1 The distance from the centre to the rod is $\sqrt{25^{2}-24^{2}}$

For taking moments about the centre of the ring or about the mid-point of the rod, or C.O.M. of frame (correct number of terms required in equation)
$(1.5+0.6) \bar{x}=0.6 \times 7$ or $(1.5+0.6)(7-\bar{x})=1.5 \times 7$
$1.5 \bar{x}=0.6(7-\bar{x})$
Distance is 2 cm
SR Allow M1 for $48.7=(50 \pi+48) \bar{x}$

2 (i) $O Q=4 \tan 20^{\circ}(=1.456)$
B1
$O G=1.5$
B1
G not between O and Q (all calculations correct)
B1

3
(ii) Hemisphere does not fall on to its plane face

Because the moment about P is clockwise or the centre of mass is to right of $P Q$

3 (i) Rope is at 30° to wall, or beam is at 0° to the horizontal or a correct trig. ratio used

For taking moments about A or
For taking moments about P and resolving horizontally
M1
$2.5 T=45 \mathrm{~g} \times 3 \cos 30^{\circ} \quad$ or
$5 H=45 g \times 3 \cos 30^{\circ}$ and $H=T \sin 30^{\circ}$
A1 ft

Tension is 468 N
A1

4
(ii) Horizontal component is $234 \mathrm{~N}(\mathrm{ft} 1 / 2 T) \quad \mathrm{B} 1 \mathrm{ft}$

For resolving forces vertically $\left(V=45 g-T \cos 30^{\circ}\right) \quad$ M1
Magnitude of vertical component is 45 N A1 ft
SR angle incorrect (i) B0, M1, A1 ft A0, (ii) B1 ft (T and angle), M1, A0

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2003	$9709 / 8719$	5

4 (i) For using Newton's second law with $a=v \frac{d v}{d x}$
$-\frac{1}{3 v}=0.2 v \frac{d v}{d x}$
$3 v^{2} \frac{d v}{d x}=-5$ from correct working
(ii) For separating the variables and attempting to integrate
$v^{3}=(A)-5 x$
For using $x=0$ and $v=4$ to find A, and then substituting
$x=7.4$ (or equivalent using limits)
$v=3$

5
 (i) For resolving forces vertically (3 term equation)

$\mathrm{T} \cos 60^{\circ}+0.5 \times 10=8$
Tension is 6 N
(ii) Radius of circle is $9 \sin 60^{\circ}$ (7.7942)

Alternative for the above 2 marks:
For using Newton's second law perpendicular to the string with $\mathrm{a}=\frac{v^{2}}{r}$
$(8-0.5 \times 10) \sin 60^{\circ}=0.5 \frac{v^{2}}{\left(9 \sin 60^{\circ}\right)} \cos 60^{\circ}$
Speed is $9 \mathrm{~ms}^{-1}$

NB Use of $m r \omega^{2}$, the M1 is withheld until $v=r \omega$ is used
SR Lift perpendicular to the string:
(i) $8 \sin 60^{\circ}=0.5 \mathrm{~g}+T \cos 60^{\circ} \rightarrow T=3.86: \mathrm{M} 1, \mathrm{~A} 1, \mathrm{~A} 1(-1 \mathrm{MR})$ (2 out of 3 max);
(ii) $3.86 \sin 60^{\circ}+8 \cos 60^{\circ}=\frac{0.5 v^{2}}{9 \sin 60^{\circ}}: \mathrm{B} 1, \mathrm{M} 1, \mathrm{~A} 1 \sqrt{ }, \mathrm{~A} 1(-1 \mathrm{MR})(3$ out of 4 max)
$\Rightarrow \underline{10.7}$

6 (i) For using $y=\dot{y}_{0} t-\frac{1}{2} g t^{2}$ with $y=0$ and $t=10$ or $\dot{y}=\dot{y}_{0}-g t$ with $\dot{y}=0$ and $t=5$
$0=60 \sin \alpha \times 10-\frac{1}{2} \times 10 \times 10^{2}$ or $0=60 \sin \alpha-10 \times 5$
$\alpha=56.4^{\circ}$
(ii) For substituting $t=5$ into $y=\dot{y}_{0} t-\frac{1}{2} g t^{2}$ or $\dot{y}=0$ into $\dot{y}^{2}=\dot{y}_{0}{ }^{2}-2 g y$ or $\dot{y}=0$ and $t=5$ into $y=\frac{\dot{y}_{0}+\dot{y}}{2} t$

Greatest height is 125 m
(iii) $\dot{y}=60 \sin \alpha-g T$
$\dot{x}=60 \cos \alpha$
For attempting to solve $\dot{x}=\dot{y}$, or a complete method for an equation in T using $\dot{x}=\dot{y}$
$T=1.68$ A1

NB. Use of $\dot{y}_{0}=60$ in (i) and (ii) is M0

7
(i) For using $T=\frac{\lambda x}{L} \quad\left(\frac{130 \times 3}{10}\right.$ or $\left.\frac{130 \times 1.5}{5}\right)$
(ii) For resolving forces vertically ($m g=2 \times 39 \times \frac{5}{13}$)

Mass is 3 kg
(iii) Extension $=20-10$ (or 10-5)

For using EPE $=\frac{\lambda x^{2}}{2 L}$
(L must be 10 or 5 ; must be attempt at extension, e.g. $x=20$ or $x=8-2.5$ is MO)
[EPE $=\frac{130 \times 10^{2}}{2 \times 10}$ or EPE $=2 \times \frac{130 \times 5^{2}}{2 \times 5}$]
(Allow M1 only for $x=2$ or 3) M1

EPE is 650 J (ft attempted extension in lowest position)
(iv) Change in GPE $=3 \times 10 \times 8$

For using the principle of conservation of energy with
KE, GPE and EPE all represented
$650=1 / 23 v^{2}+3 \times 10 \times 8+\frac{130 \times 2^{2}}{2 \times 10}$
Speed is $16 \mathrm{~ms}^{-1}$

